Melinda L. Telli, Blanca Devitt, Katharine Cuff, Shaveta Vinayak, Rita Nanda, Alberto J. Montero, Rina Hui, David A. Canton, Christopher Twitty, Sunny Xie, Donna Bannavong, Bridget O’Keefe, Sandra Aung, Rohit Joshi

1Stanford University School of Medicine, Stanford, CA, USA; 2Department of Oncology, Eastern Health Clinic School, Monash University, Box Hill, VIC, Australia; 3Princess Alexandra Hospital, Windangisha, QLD, Australia; 4University of Washington, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA, USA; 5University of Chicago, Chicago, IL, USA; 6University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA; 7Westmead Breast Cancer Institute, Westmead Hospital and the University of Sydney, Sydney, NSW, Australia; 8OncoSec Medical Incorporated, San Diego, CA, USA; 9Melodic Oncology and Harmanology, Adelaide, SA, Australia

• Interleukin-12 (IL-12) is a potent immunoregulatory cytokine that plays a key role in the crosstalk between the innate immune response (dendritic, macrophage, and natural killer cells) and the adaptive immune response (T cells and B cells). Through this activity, IL-12 promotes tumor-immune responses.1

• DNA plasmid-based IL-12, tavoquinogene teleplasmid (TAVO™), delivered to accessible tumors by intratumoral injection and combined with electroporation (TAVO-EP) has been shown to induce activation of innate and adaptive tumor-infiltrating and peripheral immune cells, regression of treated and distant untreated lesions (abscopal effect), and expression of PD-L1 in patients with melanoma or TNBC, without the systemic toxicity that has historically limited therapeutic use of IL-12.2

The combination of TAVO-EP and pembrolizumab has demonstrated durable responses in melanoma patients with immunologically “cold” tumors or with prior progression on anti-programmed cell death protein 1 (anti-PD1) therapy.3

• A phase 1 study demonstrated the safety and tolerability of TAVO-EP in patients with locally advanced or recurrent TNBC cutaneous and subcutaneous tumors.4

• Combining TAVO-EP with an anti-PD-1 antibody, such as pembrolizumab, is thought to further improve responses in patients with mTNBC by converting poorly-immunogenic/low TIL tumors into immune-responsive/high TIL tumors.

• KEYNOTE-890/OMS-I141 is a phase 2, open-label, multicenter study.

• Patients in Cohort 2 will receive the following treatments:
 - TAVO-EP: days 1, 5, and 8, every 6 weeks, for up to 18 cycles.
 - TAVO dose is 0.5 mg/mL at dose volume of ~1/4 lesion volume, injected intratumorally.
 - Pembrolizumab: 200 mg IV, every 3 weeks, for up to 35 cycles.
 - Nab-paclitaxel: 100 mg/m² IV on days 1, 8, and 15 every 4 weeks, for up to 25 cycles.

• ORR by blinded independent central review (BICR) based on RECIST v1.1

• The planned sample size of Cohort 2 is 40 patients and is based on the ability to determine statistically significant and clinically meaningful improvement in PFS and OS vs chemotherapy alone for the treatment of 1st-line PD-L1 positive mTNBC.6

• Imaging for tumor assessment will be completed every 12 weeks.

Mechanism of Action of TAVO-EP

• IL-12 is a potent proinflammatory cytokine with the following antitumor mechanisms:
 - Increasing MHC I antigen presentation
 - Attracting additional TNF, TNF-α, and CD8+ T cells into TNBC
 - Reversing tumor-induced immunosuppression

Clinical translation of IL-12 immunotherapies experienced setbacks in 1990s-2000s due to severe toxicities associated with systemic IL-12 injections. Intratumoral delivery of plasmid IL-12 (TAVO) followed by electroporation yields sustained expression of IL-12 and stimulates a systemic proinflammatory immune response, without systemic immune-related toxicities.

References

7. Phillips Gilmore Oncology Communications Inc, for professional assistance with poster preparation.

This presentation is the intellectual property of the author/presenter. Contact them at mtelli@stanford.edu for permission to reprint and/or distribute.