Intratumoral delivery of tavokinogene telseplasmid (plasmid IL-12) and electroporation induces local and systemic enhancement of CD8 T cells and sensitizes to anti-PD1 therapy

Hiroshi Nagata1, Melinda L. Tellis, Chaitanya R. Acharya1, Irene Woprin2, Kaitlin Zabotisky3, Bernard A. Fox4, Carlo B. Bifulco5, Shawn M. Jensen5, Carmen Ballesteros-Merino6, Erica Browning5, Reneta Hermiz2, Lauren Svensen2, Donna Bannavong5, Kellie Malloy2, David A. Cant7, Chris G. Twitty1, Takuya Osada1, H. Kim Lyerly1,2,7, Erika J. Crosby1

1Duke University Medical Center, Department of Surgery, Durham, NC; 2Stanford University School of Medicine, Departments of Medicine & Surgery3; Stanford, CA; 4Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR; 5Oncodex Medical Incorporated, San Diego, CA; 6Duke University Medical Center, Departments of Pathology & Immunology, Durham, NC

Background

- Sustained disease control and prolonged survival in patients with TNBC is uncommon, highlighting the need for improved immune-based strategies particularly in poorly immunogenic tumors.
- Interleukin-12 (IL-12) is involved in the generation of innate and adaptive immune responses, an inflammatory tumor microenvironment and is critical in eliciting a productive anti-tumor immune response.
- Intratumoral injection of plasmid IL-12 (tavokinogene telseplasmid; TAVO™) followed by electroporation (EP) (TAVO-EP; collectively designated TAVO) is a gene therapy approach that drives local and immunologically relevant exposure of IL-12 with minimal systemic immune-related toxicity.*

Methods

- Murine TNBC (JC-HER3) cells were orthotopically implanted into mice and allowed to establish prior to treatment with TAVO or control plasmid.
- On days 0, 4, and 7, the mice underwent IT administration of plasmid, followed by in vivo electroporation.
- Tumors were digested and CD45+ cells sorted for flow cytometry.
- Flow cytometry for activated T cell populations and MDSCs and IHC summary were harvested on day 14.
- Tumor-bearing mice (n=7 for each group) underwent interventions described in A, and the tumors were measured every other day and shown by Mean ± SEM.

Results

- **Figure 2. TAVO Treatment Expands an Effector CD8 T cell Population Both Locally and in Murine TNBC Model**
- **Figure 3. Systemic Response to TAVO in TNBC Patients**
- **Figure 4. TAVO Treatment Enhances Survival of Tumor-Bearing Mice When Combined With Anti-PD1**
- **Figure 5. Clinical Data Demonstrates That TAVO Treatment Converts a Previous ICB Non-Responder**

Summary & Conclusions

- TAVO treatment overcomes an immunologically "cold" tumor microenvironment by expanding T cells locally and systemically and by minimizing the infiltration of potentially suppressive granulocytic cells in both preclinical models and TNBC patients.
- There is an increase in expression of PD-1/PD-L1 following TAVO therapy that may sensitize a patient to subsequent checkpoint inhibitor therapy.
- Combined treatment of TAVO and PD-1/PD-L1 blockade enhanced anti-tumor efficacy and prolonged survival in preclinical models of TNBC.
- These data are supportive of ongoing trial OMS-I141 (KEYNOTE-890), a phase 2, multi-cohort, open-label, multicenter study.

- Cohort 1 will be a single-arm study of intratumoral TAVO-EP plus pembrolizumab therapy.
- Cohort 2 will be a single-arm study of intratumoral TAVO-EP plus pembrolizumab with nab-paclitaxel (Abraxane®) chemotherapy.
- Patients with TNBC and EP accessible cutaneous/subcutaneous disease will be enrolled.

References

*Abbreviations: BC, breast cancer; EOS, end of study; ICB, immune checkpoint blockade; IHC, immunohistochemistry; IL-12, interleukin-12; IT, intratumoral; PD-1, programmed death-1; PD-L1, programmed death ligand 1; TNBC, triple-negative breast cancer; TAVO, tavokinogene telseplasmid; TAVO™, tavokinogene telseplasmid; MDSC, myeloid-derived suppressor cell.