

OncoSec's Current Immunotherapy Platform

With our current applicator, we've seen systemic responses in both the treated and untreated tumors after applying our therapies to cutaneous and subcutaneous tumors.

Many tumors, "especially cold tumors," do not respond to conventional therapies (chemo, checkpoint inhibitors, TACE, embolization, ablation). There is an industry rush to find replacement or augmenting therapies.

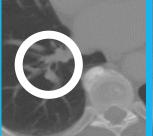
Using the tumor as a gateway to the immune system, intratumoral plasmid-based IL-12, delivered via electroporation, can generate local and systemic immune responses that effectively converts immunologically cold tumors to hot tumors.

Our current **proprietary novel applicator** and generator allows for electroporation of IL-12 into cells across many tumor types.

What TAVO, Combined with CPIs, is Capable Of

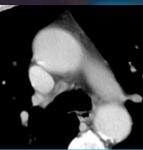
Regression of untreated mediastinal node and parenchymal lung metastases

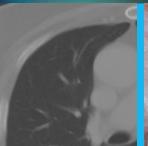
BASELINE



TREATED LESION

12 WEEKS





RESPONSE:TUMOR FLARE,
NECROSIS

24 WEEKS

REGRESSION OF ALL LESIONS
INCLUDING UNTREATED
VISCERAL LESIONS IN LUNGS
AND DISTAL LYMPH NODES

TODAY, PRACTITIONERS NEED

Urgent Treatment Options for Patients with Visceral Lesions

42k

42K+ patients were diagnosed with liver cancer in 2018

The majority of diagnoses are in advanced stages of the disease not amenable to curative resection

30k

In 2018, 30K+ patients succumbed to liver cancer, despite decades of therapy advancements

GASTROINTESTINAL CANCER

55k

55K+ patients were diagnosed with pancreatic cancer in 2018

90%

A staggering 90% of pancreatic cancer cases are diagnosed at a stage when curative resection is not possible

44k

44K patients died from this malignancy in 2018

LUNG CANCER

2M

2M patients were diagnosed with lung cancer in 2018

16%

Only 16% of lung cancer cases are diagnosed at an early stage. Distant tumors (spread to other organs) drastically reduce the survival rate

154k

154K Americans are expected to die from lung cancer in 2018 (25 percent of all cancer deaths)

PRACTITIONERS HAVE ASKED US TO DEVELOP A DEVICE THAT

Delivers the Same Powerful Therapy to Visceral Lesions

Tumors located inside the body, including gastrointestinal (GI) tumors, pancreatic tumors, and liver (e.g. HCC) tumors have unique challenges:

CURRENT OPTIONS TO CHANGE TUMORS FROM 'COLD' TO 'HOT' DO NOT DRIVE STRONG SYSTEMIC RESPONSES

CURRENT LIMITATIONS: ONCOSEC'S CUTANEOUS/SUBCUTANEOUS DEVICE CAN ONLY REACH LESIONS 1.5-2CM DEEP

INTRODUCING THE

VLA: Visceral Lesion Applicator

Flexible catheterbased applicator

A more rigid trocar-based applicator

Lower voltage Apollo generator

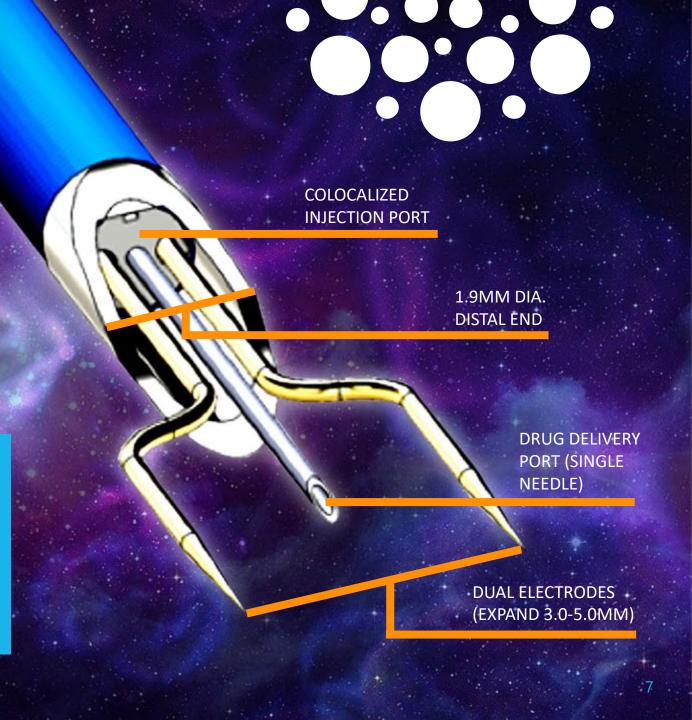
CAN BE USED WITH

Endoscope

Bronchoscope

Trocar

Cystoscope

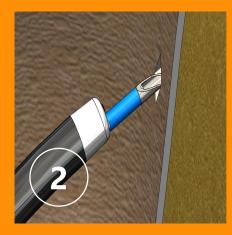

Developing the Next Generation Device

The same powerful TAVO applicator miniaturized to reach visceral lesions

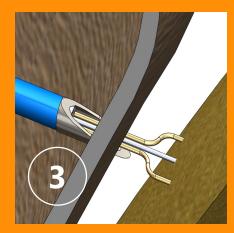
PROPRIETARY EXPANSION DESIGN

The expanded spacing of the electrodes is critical to achieve a higher rate of transfection (success of the EP) and minimize the chances of electrical arcing.

This expansion happens under pressure of the organ, a technologically difficult feat.



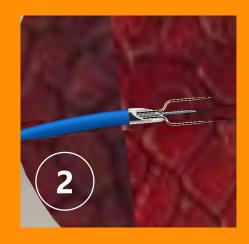
The Flexible Catheter Applicator


The catheter-based applicator includes a flexible body that, with a diameter of 1.9mm, is sized for passage through currently available endoscopes, cystoscopes, and bronchoscopes.

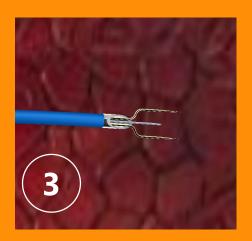
NAVIGATE TO THE ORGAN / LOCATION

ENTERS THE ORGAN BY PUNCHING THROUGH THE ORGAN WALL

NEEDLE AND ELECTRODES DEPLOYED, PLASMID ADMINISTERED, ELECTROPORATION OCCURS



Rigid Trocar-based Applicator


The trocar-based applicator accesses a visceral tumor using a minimally invasive transcutaneous approach under CT or ultrasound guidance.

ENTERS THE ORGAN

NEEDLE AND
ELECTRODES EXPANDED
THERAPEUTIC AGENT
ADMINISTERED

ELECTROPORATION
OCCURS
CELL MEMBRANES BECOME
POROUS AND TAKE UP THE
THERAPEUTIC AGENT

APPLICATOR DEVELOPMENT STATUS

Several live, large animal studies have been performed with the VLA

- Design control Phase I complete. Molded component design, material selection in process. Product design evaluation in process.
- Preclinical prototypes of both rigid trocarbased and flexible catheter applicators are in functional evaluation.

Estimated completion 3Q2020

Product proof of concept complete. Applicators have successfully reached and deployed in lung, liver, pancreas, bladder, and bone in a live pig.

The New Low Voltage Apollo Generator will be used with the Visceral Lesion Applicators

PRE-CLINICAL GENERATOR COMPLETE

In use by Oncosec research team and outside institutions

CLINICAL GENERATOR IS BUILT

In software development and design verification phase at Minnetronix (Estimated completion end of 2020)

	RANGE	ACCURACY
PULSE AMPLITUDE	10V-300V	5%
CONSTANT CURRENT LIMIT	4A	20%
PULSE LENGTH	100US – 10MS	5%
PULSE INTERVAL	300MS – 10S	5%

TRACE Technology Built In

THE NEWEST GENERATOR COMES WITH THE ABILITY TO USE TRACE TECHNOLOGY

Generator receives information on impedance from the tissue, relays it back to the generator which is able to modulate the current

BENEFIT = MORE CONTROL

Different Cells Types
Work Differently

Different Tumors Have Different Reactions

This next generation functionality will give us the ability to tailor and optimize the delivery in real-time

GENERATOR

Continuous feedback system monitors energy delivery

Auto shut down in cases where voltage exceeds specified threshold

Provides feedback to clinician on correct tissue placement

Always Deployed Safely

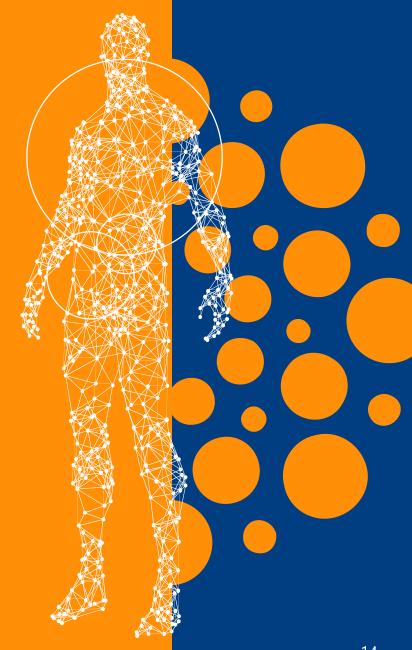
Embedded and deployable electrodes within applicator to prevent accidental needle sticks

EP initiated by covered foot switch only, preventing accidental initiation

Expansion mechanism highly tested against failure to expand or electrode loss

Single use, sterile device

THE VLA IS ABLE TO DELIVER TARGETED **IMMUNOTHERAPIES, WHICH HAVE THE** POTENTIAL TO ACT IN CONCERT WITH EXISTING THERAPIES TO DRIVE ENHANCED RESPONSES IN **IMMUNOLOGICALLY COLD TUMORS.**


ABLATION

TACE

POTENTIAL DUAL REGULATORY PATHWAY PROVIDES FOR NEARER TERM APPROVAL OF STANDALONE DEVICE (VLA) AND CONCURRENT COMBINATION IND WITH VLA + TAVO (OR NEXT-GEN PLASMID)

Parallel device filing will be used in order to get faster accessibility to doctors, quicker clinical deployment, and more timely profitability.

- 1 STANDALONE Device Approval IDE → PMA clearance
- 2 COMBINATION IND for VLA + TAVO

BENEFITS

Faster pathway to clinic

Faster marketing authorization = Quicker time to revenue

Increase access to physicians through sales force

Key Milestones in Our Path to Market NOV. 2019
Completed large animal feasibility studies

Liver Basket Study

2H2021

2H2020

Begin large animal safety studies File IDE and/or IND

Established Biotech Leaders WITH A TRACK RECORD OF SUCCESS

MANAGEMENT

Daniel J. O'Connor *President/Director/CEO*

Keir LoiaconoGeneral Counsel and
Vice President Corporate
Development, Chief Compliance Officer

Christopher G. Twitty, PhD *Chief Scientific Officer*

Robert W. Ashworth, Ph.D *Vice President, Regulatory, Quality/CMC*

Kellie Malloy Chief Clinical Development Officer

John Rodriguez Vice President, Product Engineering

Robert DelAversano, CPA *Principal Accounting Officer and Controller*

Kim Jaffe, PhD *Senior Director, Operations*

G H Co

Gem HopkinsHead of IR and Corporate
Communications

BOARD OF DIRECTORS

Daniel J. O'Connor Chief Executive Officer & Director Margaret R. Dalesandro, Ph.D., Chair Robert E. Ward, Director
H. Kim Lyerly, Ph.D. Director
Chao (Frank) Zhou, Director
Kevin R. Smith, Director
Jim DeMesa, M.D., M.B.A. Director
Yuhang Zhao, Ph.D., M.B.A., Director
Joon Kim, Director

CLINICAL ADVISORS

Adil A. Daud, M.D.
Alain Algazi, M.D.
Axel Hauschild, M.D., Ph.D
Georgina Long, BSc, Ph.D., MBBS, FRACP
Pamela Munster, M.D.
Robert H.I. Andtbacka, M.D., CM, FACS, FRCSC
Walter J. Urba, M.D., Ph.D.

SCIENTIFIC ADVISORS

Richard Heller, Ph.D. Iacob Mathiesen, Ph.D. Soldano Ferrone, M.D., Ph.D.

SURGICAL ADVISORS

Daniel Simon, M.D., Interventional Radiology
James Nitzkorski, M.D., FACS, Surgical Oncology
Michael Pritchett, D.O., MPH, Interventional Pulmonology
Alexander Kutikov, M.D., Surgical Oncology

Keir Loiacono

914.329.9071 kloiacono@oncosec.com