Intra-tumoral delivery of Interleukin-12 DNA via *in vivo* electroporation leads to regression of injected and non-injected tumors in Merkel cell carcinoma.

Final results of a phase 2 study

S. Bhatia¹, J. Iyer¹, D. Ibrani¹, A. Blom¹, D. Byrd¹, U. Parvathaneni¹, T. Diep², M.H. Le², R.H. Pierce², R. Heller³, A. Daud⁴, P. Nghiem¹

¹University of Washington, Seattle, WA, USA
²Oncosec Medical Inc, San Diego, CA, USA
³Old Dominion University, Norfolk, VA, USA
⁴University of California San Francisco, CA, USA
COI disclosures

Adil Daud, MD: Stock (Oncosec), Consultant (Oncosec)

Richard Heller, PhD: Patents; Stock (Oncosec); Advisory board (Oncosec)

Mai H. Le, MD, Robert H. Pierce, Tu Diep: Employed by Oncosec

Rest of the authors have no relevant COI.
Merkel cell carcinoma (MCC)

Aggressive disease with suboptimal therapeutic options
- 46% disease-associated mortality rate \{Lemos BD 2010\}
- High recurrence rate for patients with loco-regional disease despite surgery +/- radiation therapy (RT)
- High response rate with systemic chemotherapy (ORR ~ 50%), but responses seldom durable.

Strong rationale for immunotherapy
- Merkel cell polyoma virus (MCPyV) \{Feng H 2008\}
- Intra-tumoral (IT) CD8+ T-cell infiltration associated with better prognosis \{Paulson K 2011\}
- Multiple mechanisms of immune evasion
IL-12: A key mediator of IFNγ-driven T_H1-type pro-inflammatory response

Systemic rIL-12 administration is quite toxic
- Myelosuppression
- GI bleeding
- Death

Intra-tumoral delivery may improve its therapeutic index.
Intra-tumoral delivery of IL-12 plasmid DNA via *in vivo* electroporation (IT-pIL12-EP or *ImmunoPulse*™ IL-12)
Hypothesis: Local IT-pIL12-EP promotes tumor inflammation and a systemic anti-tumor immune response.
Phase II study of IT plL12-EP in MCC

• To the best of our knowledge, this study represents the first prospective clinical trial of immunotherapy in advanced MCC (First-patient first-visit: January 2012)

• Single-institution (University of Washington, Seattle)

• Key eligibility criterion: At least one injectable MCC lesion, defined as an easily-palpable superficial lesion (cutaneous, subcutaneous or lymph nodal metastasis), away from major nerves or blood vessels.
Study objectives and Trial design

Primary Objective
To demonstrate that IT-pIL12-EP leads to increased local expression of IL-12 in the tumor microenvironment

Secondary Objectives
- Safety and tolerability
- Efficacy – Local and systemic
- Immunologic changes and biomarkers

Pre-treatment Biopsy
Plasmid Dose = 0.5 mg/mL

Post-treatment Biopsy (Day 22)

Cohort A (Neo-adjuvant)
Definitive Surgery or Radiation → F/U

Cohort B (Metastatic)
Restaging at 6 weeks → Additional Treatment Cycles (Maximum 4 cycles total)

Screening & Enrollment
2 Weeks
Study population: Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>Cohort A (N = 3)</th>
<th>Cohort B (N = 12)</th>
<th>Overall (N = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age (years)</td>
<td>59</td>
<td>69</td>
<td>66</td>
</tr>
<tr>
<td>ECOG Performance Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>3</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stage at Enrollment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>0</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Prior Therapies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td>1</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Radiation</td>
<td>1</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Systemic Therapy</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>MCPyV Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T-oncoprotein serology)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>3</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
IT pIL12-EP was safe and well-tolerated

Mild, and mostly local AEs.
- EP-associated pain - Grade 1 and transient (lasting only a few seconds)
- Mild local inflammatory reaction

No treatment-related ≥Grade 3 AEs; no SAEs reported.

No treatment-discontinuation due to AEs.

<table>
<thead>
<tr>
<th>Treatment-Related AEs</th>
<th>All Grades N (%)</th>
<th>≥ Grade 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedural Pain</td>
<td>15 (100%)</td>
<td>0</td>
</tr>
<tr>
<td>Treatment Site Reaction*</td>
<td>11 (73%)</td>
<td>0</td>
</tr>
<tr>
<td>Cellulitis</td>
<td>3 (20%)</td>
<td>0</td>
</tr>
<tr>
<td>Peripheral Edema</td>
<td>2 (13%)</td>
<td>0</td>
</tr>
<tr>
<td>Pain (other)</td>
<td>2 (13%)</td>
<td>0</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>1 (7%)</td>
<td>0</td>
</tr>
</tbody>
</table>

*includes local inflammation, discoloration, bruising, necrosis and erythema at the treatment site
IT pIL12-EP led to sustained local expression of IL-12 protein

11 out of 14 (79%) patients had increased IL-12 protein levels at day 22 in treated tumors.

Fold increase range: 1.7x to 3147x

Paired biopsy samples (Baseline and Day 22) of treated lesions were evaluated for IL-12 protein levels by ELISA.
IT pIL12-EP led to regression of treated as well as non-injected distant MCC tumors.

Local Lesion Regression

| Proportion of treated lesions with major (>30%) regression | 12/27 (44%) |

Distant Lesion* Regression

| Number of evaluable patients with a distant lesion | 10 |
| Proportion of patients with distant lesion regression | 3/10 (30%) |

*Defined as a non-injected MCC tumor, clearly distinct from treated lesions.
IT pIL12-EP led to objective clinical responses in metastatic MCC

Cohort B Patients	N = 12*
Complete Response (CR) | 0 (0%)
Partial Response (PR) | 3 (25%)
Stable Disease (SD) | 1 (8%)
Progressive Disease (PD) | 8 (52%)

NOTE: Modified-RECIST 1.1 was used.
- Up to 10 cutaneous target lesions were permitted (>2 lesions per organ)
- Combination of clinical and radiological measurements were allowed.

Cohort A (N = 3; all stage III B MCC)

- One patient had **pathologic CR** and remains free of recurrence at > 6 mos.
- Another patient has been **recurrence-free since 08/2012** (> 3 years).
- Third patient was recurrence-free for 9 mos before developing PD.
Patient 002 (Cohort B): Durable regression of treated and untreated tumors.

At 6 months (confirmed Partial response; regression of distant non-injected lesions)

Prior therapies:
- Surgery
- RT
- Chemotherapy (PE)
- IFN- β
Patient 002: Enrichment of MCPyV-specific CD8+ T-cells in TILs of treated and distant tumors

IL12-2 TIL Pre and Post Treatment
Staining with B35/MCPyV "FPW" Tetramer

Negative Control (W876 REP)

3 Months Pre-Treatment (October 2011)

Immediately Pre-Treatment (January 2012)

2 Weeks Post-Treatment (February 2012)

8 Months Post-Treatment (September 2012)

10 Months Post-Treatment (November 2012)

Distant lesion

Comp-FITC-A :: CD8

Comp-APC-A :: CD8

Comp-PE-A :: Tetramer
PD1/PD-L1 mediated T-cell exhaustion could facilitate immune evasion despite increased TILs.

Despite clearly increased CD8+ T-cell infiltrate in treated tumors, this patient progressed in both local and distant tumors.
IT pIL12-EP mediated pro-inflammatory phenotype is characterized by NK-cell activation gene signature

- The majority of cases (70%) show increased expression of NK activation genes by Nanostring® evaluation
- NK cells are a key lymphocyte population involved in tumor surveillance and anti-tumor immunity
- IL-12 is a known activator of NK cells
Conclusions

- IT pIL12-EP leads to effective transfection of IL-12 plasmid DNA and sustained expression of IL-12 protein

- IT pIL12-EP is safe and well-tolerated in MCC patients
 - No major systemic toxicities; no ≥ Grade 3 AEs or SAEs

- IT pIL12-EP is associated with objective clinical responses in Merkel Cell Carcinoma

- IT-pIL12-EP results in a local pro-inflammatory response, which in turn promotes systemic anti-tumor response

- Combination studies with emerging systemic therapies (such as anti-PD-1/PDL-1) should be explored in advanced MCC.
Acknowledgements

Patients/Families

University of Washington
Paul Nghiem, MD PhD
John Thompson, MD
Nicole Real-Pelz
RNs (Jon Smith, Debra Martin)

Natalee Miller
Natalee Vandeven
Rima Kulikauskas
Erica Shantha, MD
James MacDonald, Ph.D
Theo Bammler, Ph.D

OncoSec Medical, Inc.
Victoria Leonidova
Shawna Shirley, Ph.D
Erika Rickel
Jean Cambell, Ph.D
Toshimi Kathryn Takamura

Others
Adil Daud, MD (UCSF)
Richard Heller, PhD (ODU)
Paul Tumeh, MD (UCLA)
Phillip J. Sanchez, PhD
Mariam Vanetsyan
Noorial Banayan
Questions?