Systemic anti-tumor effect and clinical response in a phase 2 trial of intratumoral palisomat interleukin-12 in patients with advanced melanoma.

A. I. Dauda, A. Algazib, M. Ashworthc, L. Fongd, J. Lewise, S. E. Chanb, M. Buljanb, M. Molinab, K. T. Takamurab, T. T. Diepb, R. Hellerb, R. H. Pierceb, and S. Bhatiaa

aUniversity of California, San Francisco, San Francisco, CA; bLakeland Regional Medical Center, Lakeland, FL; cOncoSec Medical, Inc., San Diego, CA; dOld Dominion University, Norfolk, VA; eUniversity of Washington, Seattle, WA

ABSTRACT

Background: Intratumoral IL-12 (pIL-12) promotes anti-tumor activity through multiple mechanisms, including augmentation of adaptive and innate immune responses. Intratumoral delivery of IL-12 via electroporation (EP) avoids systemic toxicity while promoting systemic antitumor immunity. This phase 2 study explored the systemic efficacy, clinical response and safety of pIL-12 in 12 patients (pts) (10 treatment cycles of 4 pIL-12 EP on days 1, 5, 8 in up to four lesions per cycle) in a maximum of 4 cycles. At 12-week intervals, 200 μg was assessed by a modification of RECIST for new lesions with metastasis, eventually selected for IL-12 EP.

Methods: This open-label, exploratory phase 2 study plan 4 treatment cycles (100 μg for IL-12) in pts with metastatic IL-12 resistant and safety of IL-12 plasmid EP (pIL-12) (28). Following 12 cycles of 4 (6), pIL-12 with aerosol epinephrine.

RESULTS

Population: 28 pts were randomized with stage IIIB-IV melanoma or cutaneous or intransit lesions accessible to treatment.

Treatment: One treatment cycle consists of one IL-12 EP cycle on days 1, 5, 8 in up to four lesions per cycle. A maximum of fourcycles.

End points: Local treatment with pIL-12 EP is well tolerated without severe systemic side effects. Local treatment and non-injected controls suggest systemic induction of systemic antitumor immune response Local and systemic immune therapies are consistent with the measured pharmacodynamic effect of IL-12. Based on these data, an expanded protocol to evaluate increased treatment frequency is planned for melanoma patients.

INTRODUCTION

Intratumoral IL-12 (pIL-12) shows promising antitumor activity through multiple mechanisms, including augmentation of adaptive and innate immune responses. Intratumoral delivery of IL-12 via electroporation (EP) avoids systemic toxicity while promoting systemic antitumor immunity. This phase 2 study explored the systemic efficacy, clinical response and safety of pIL-12 in 12 patients (pts) (10 treatment cycles of 4 pIL-12 EP on days 1, 5, 8 in up to four lesions per cycle) in a maximum of 4 cycles. At 12-week intervals, 200 μg was assessed by a modification of RECIST for new lesions with metastasis, eventually selected for IL-12 EP.

Methods: This open-label, exploratory phase 2 study plan 4 treatment cycles (100 μg for IL-12) in pts with metastatic IL-12 resistant and safety of IL-12 plasmid EP (pIL-12) (28). Following 12 cycles of 4 (6), pIL-12 with aerosol epinephrine.

RESULTS

Population: 28 pts were randomized with stage IIIB-IV melanoma or cutaneous or intransit lesions accessible to treatment.

Treatment: One treatment cycle consists of one IL-12 EP cycle on days 1, 5, 8 in up to four lesions per cycle. A maximum of fourcycles.

End points: Local treatment with pIL-12 EP is well tolerated without severe systemic side effects. Local treatment and non-injected controls suggest systemic induction of systemic antitumor immune response Local and systemic immune therapies are consistent with the measured pharmacodynamic effect of IL-12. Based on these data, an expanded protocol to evaluate increased treatment frequency is planned for melanoma patients.

INTRODUCTION

Intratumoral IL-12 (pIL-12) shows promising antitumor activity through multiple mechanisms, including augmentation of adaptive and innate immune responses. Intratumoral delivery of IL-12 via electroporation (EP) avoids systemic toxicity while promoting systemic antitumor immunity. This phase 2 study explored the systemic efficacy, clinical response and safety of pIL-12 in 12 patients (pts) (10 treatment cycles of 4 pIL-12 EP on days 1, 5, 8 in up to four lesions per cycle) in a maximum of 4 cycles. At 12-week intervals, 200 μg was assessed by a modification of RECIST for new lesions with metastasis, eventually selected for IL-12 EP.

Methods: This open-label, exploratory phase 2 study plan 4 treatment cycles (100 μg for IL-12) in pts with metastatic IL-12 resistant and safety of IL-12 plasmid EP (pIL-12) (28). Following 12 cycles of 4 (6), pIL-12 with aerosol epinephrine.

RESULTS

Population: 28 pts were randomized with stage IIIB-IV melanoma or cutaneous or intransit lesions accessible to treatment.

Treatment: One treatment cycle consists of one IL-12 EP cycle on days 1, 5, 8 in up to four lesions per cycle. A maximum of fourcycles.

End points: Local treatment with pIL-12 EP is well tolerated without severe systemic side effects. Local treatment and non-injected controls suggest systemic induction of systemic antitumor immune response Local and systemic immune therapies are consistent with the measured pharmacodynamic effect of IL-12. Based on these data, an expanded protocol to evaluate increased treatment frequency is planned for melanoma patients.