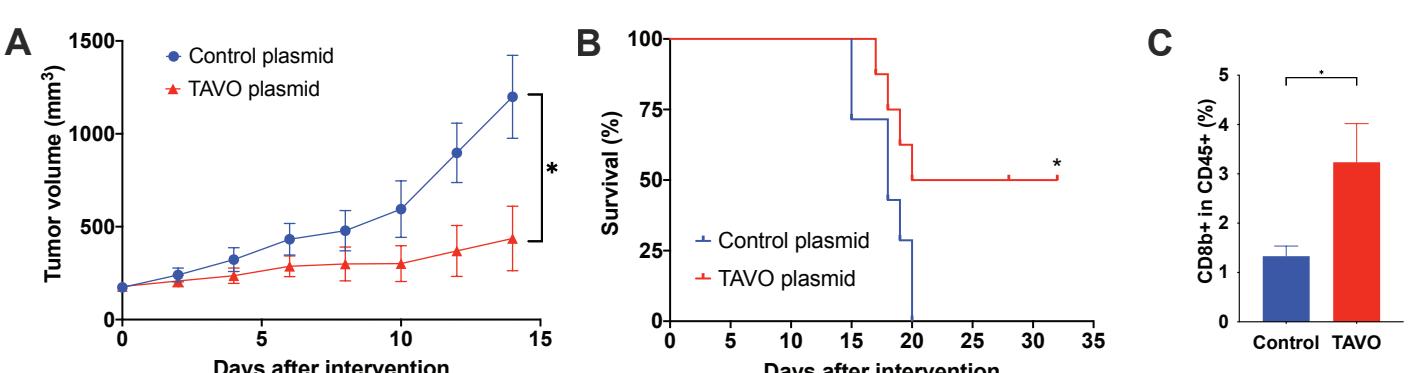


Intratumoral delivery of tavokinogene telseplasmid (plasmid IL-12) and electroporation induces local and systemic enhancement of CD8 T cells and sensitizes to anti-PD1 therapy

Hiroshi Nagata¹, Melinda L. Telli², Chaitanya R. Acharya¹, Irene Wapnir³, Kaitlin Zablotsky³, Bernard A. Fox⁴, Carlo B. Bifulco⁴, Shawn M. Jensen⁴, Carmen Ballesteros-Merino⁴, Erica Browning⁵, Reneta Hermiz⁵, Lauren Svenson⁵, Donna Bannavong⁵, Kellie Malloy⁵, David A. Canton⁵, Chris G. Twitty⁵, Takuya Osada¹, H. Kim Lyerly^{1,6,7}, Erika J. Crosby¹

¹Duke University Medical Center, Department of Surgery, Durham, NC; ^{2,3}Stanford University School of Medicine, Departments of Medicine² & Surgery³, Stanford, CA; ⁴Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR; ⁵Oncosec Medical Incorporated, San Diego, CA; ^{6,7}Duke University Medical Center, Departments of Pathology⁶ & Immunology⁷, Durham, NC

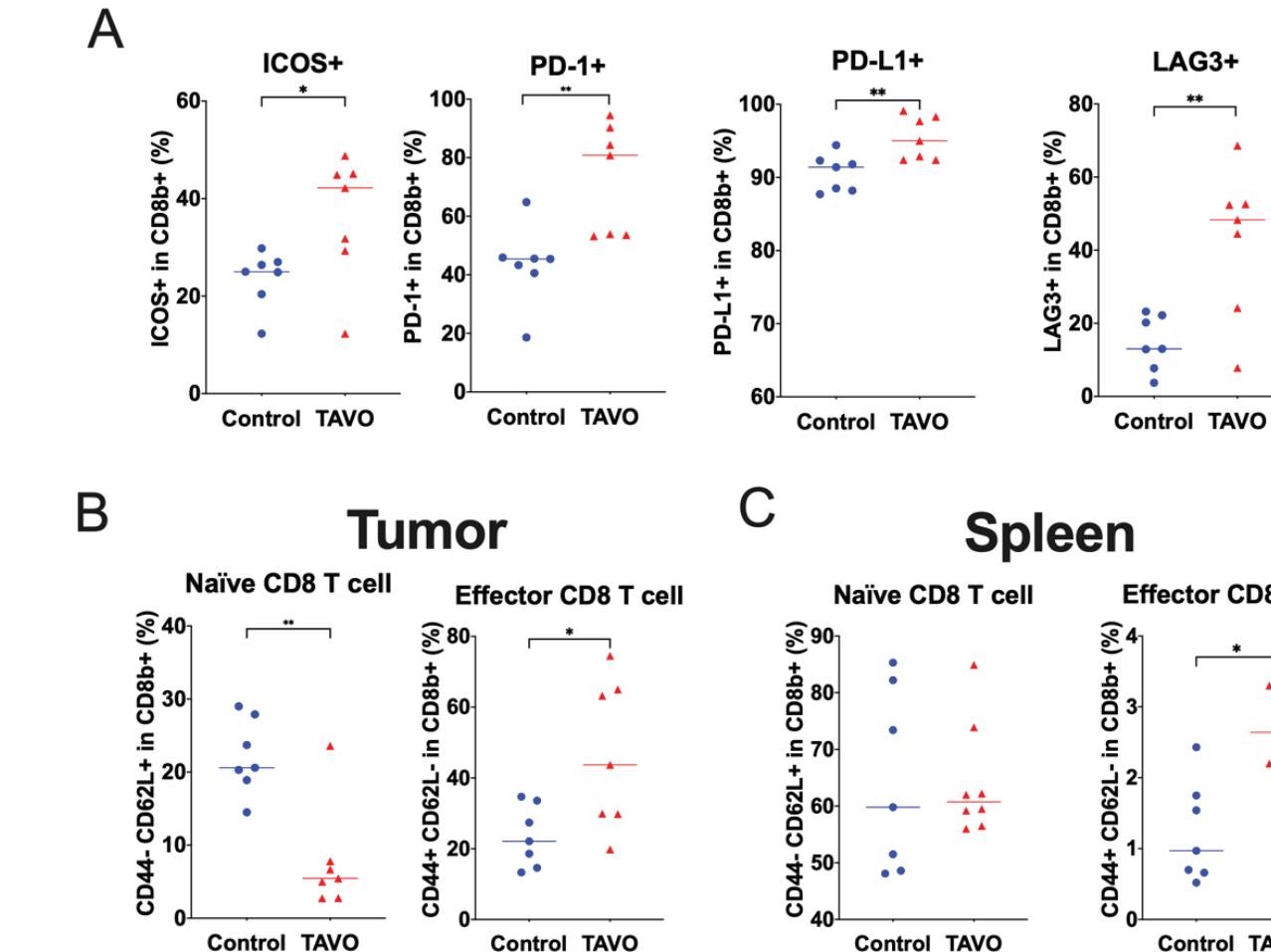
Background


- Sustained disease control and prolonged survival in patients with TNBC is uncommon, highlighting the need for improved immune-based strategies particularly in poorly immunogenic tumors
- Interleukin-12 (IL-12) is involved in the generation of innate and adaptive immune responses, an inflammatory tumor microenvironment and is critical in eliciting a productive anti-tumor immune response^{1,2}
- Intratumoral injection of plasmid IL-12 (tavokinogene telseplasmid; TAVO™) followed by electroporation (EP) (IT-TAVO-EP, collectively designated TAVO) is a gene therapy approach that drives local and immunologically relevant exposure of IL-12 with minimal systemic immune-related toxicity³⁻⁵

Methods

- Murine TNBC (JC-HER3) cells were orthotopically implanted into mice and allowed to establish prior to treatment with TAVO or control plasmid
- On days 0, 4 and 7, the mice underwent IT administration of plasmid, followed by *in vivo* electroporation
- Tumors were digested and CD45+ cells sorted for flow cytometry
- Flow cytometry for activated T cell populations and MDSCs and IHC summary data are from PMBCs and tumors from OMS-I140; data from this study were reported previously⁶
- Fold change in CD8 T cells following TAVO treatment was calculated and a fold change of >2 is shown in red (Table 1)
- Spotlight patient from OMS-I140 had previously failed to respond to atezolizumab

Results


Figure 1. IL-12 Treatment Inhibits Tumor Growth and Enhances Immune Cell Infiltration in a Murine Model of TNBC

A. Growth inhibition of JC-HER3 tumors by intratumoral TAVO plasmid administration. Murine JC-HER3 cells were subcutaneously implanted to the flank of HER3 transgenic mice with BALB/c background. When the tumor size reached 6-7 mm in diameter, mice were randomized into two groups (day 0) and received intratumoral injections of plasmid followed by *in vivo* electroporation on days 0, 4, and 7. Tumor sizes were measured every other day and shown by Mean \pm SEM (TAVO group: 8 mice, control group: 7 mice). **B.** Survival curves of JC-HER3 tumor-bearing mice. **C.** Flow Cytometric Analysis of tumor-infiltrating leukocytes in JC-HER3 tumors. JC-HER3 tumor-bearing mice (n=7 for each group) underwent interventions described in A, and the tumors were harvested on day 14. *P < 0.05

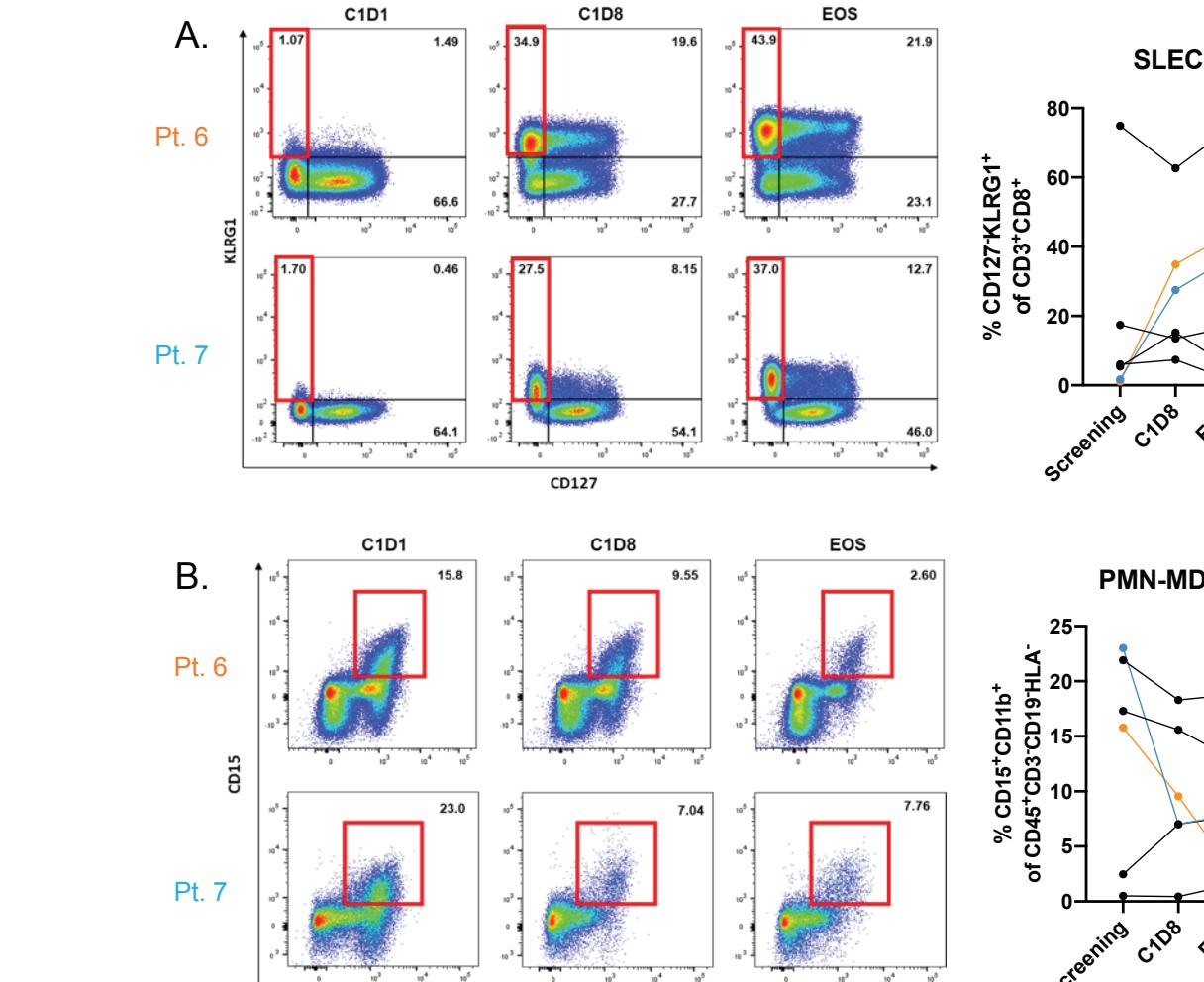

Results

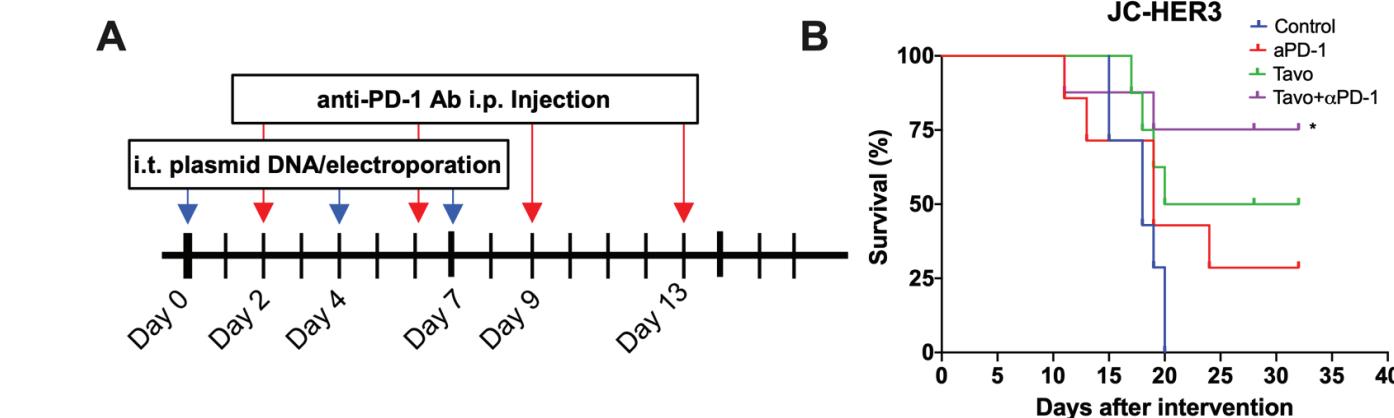
Figure 2. TAVO Treatment Expands an Effector CD8 T cell Population Both Locally and in Murine TNBC Model

A. The expression of activation/exhaustion markers on CD45+CD3+CD8b+ cells from JC-HER3 tumors. **B.** Naïve and effector T cells in CD45+CD3+CD8b+ cells from JC-HER3 tumors. **C.** Naïve and effector T cells in CD45+CD3+CD8b+ cells from spleens from JC-HER3 tumor bearing mice. *P < 0.05. **P < 0.01

Figure 3. Systemic Response to TAVO in TNBC Patients

A. Flow cytometric analysis at cycle 1 day 1 (C1D1), cycle 1 day 8 (C1D8), or end of study (EOS) was performed on PBMCs. Representative flow plots for indicated patients and summary data for **A.** SLECs (CD3+CD8b+KLRG1+CD127-) or **B.** PMN-MDSC (CD45+Lin-HLA-CD15+CD11b+).

Table 1. Summary of mIHC Quantification for Matched Lesions at Screening and EOS


Patient	Treated	CD8+ at S (cells/mm ²)	CD8+ at EOS (cells/mm ²)	Fold change to CD8s	CD163+ at S (cells/mm ²)	CD163+ at EOS (cells/mm ²)	FoxP3+ at S (cells/mm ²)	FoxP3+ at EOS (cells/mm ²)	Total PD-L1 at S (cells/mm ²)	Total PD-L1 at EOS (cells/mm ²)	Fold change in PD-L1	Ratio at S CD8/FoxP3	Ratio at EOS CD8/FoxP3	Fold change CD8:FoxP3	Ratio at S CD8/CD163	Ratio at EOS CD8/CD163	Fold change CD8:CD163
1	N	NA*	NA*		NA*	NA*	NA*	NA*	NA*	NA*							
2	Y	635.31	410.79	0.65	2934.46	1542.39	74.40	104.21	5880.09	5818.34	0.99	8.54	3.94	0.46	0.22	0.27	1.23
3	Y	8.24	199.98	24.26	509.24	1102.63	8.24	28.73	1768.04	3645.96	2.06	1.00	6.96	6.96	0.02	0.18	11.20
4	N	91.74	66.00	0.72	1181.13	986.80	28.37	2.46	386.86	74.05	0.19	3.23	26.82	8.29	0.08	0.07	0.86
6	Y	97.57	458.59	4.7	1429.45	1018.55	62.04	142.56	2578.75	753.61	0.29	1.57	3.22	2.05	0.07	0.45	6.60
7	Y	50.77	78.90	1.55	2339.25	1236.81	56.91	44.63	5.01	139.03	27.73	0.89	1.77	1.98	0.02	0.06	2.94
8	N	159.44	277.12	1.74	1736.01	4983.88	158.59	77.30	6.80	295.57	43.48	1.01	3.59	3.57	0.09	0.06	0.61
10	N	78.94	24.96	0.32	504.38	3163.62	12.52	27.46	4258.22	6.39	0.001	6.30	0.91	0.14	0.16	0.01	0.05
11	Y	46.10	2444.31	53.02	2729.52	1792.39	2.46	406.59	281.36	2051.24	7.29	18.74	6.01	0.32	0.02	1.36	80.74
12	N	0.00	1626.32	>1626.32**	2310.30	4750.41	2.52	351.85	6869.22	668.08	0.10	NA	4.62	>4.62**	NA	0.34	>0.34**

* Slides from patient 1 did not contain enough tissue to complete the analysis

**Divided by zero

Red indicates patients that had a >2 fold change in CD8 T cells following therapy.

Figure 4. TAVO Treatment Enhances Survival of Tumor-Bearing Mice When Combined With Anti-PD-1

A. 4T1 or JC-HER3 cells were subcutaneously implanted to the flank of BALB/c mice or HER3 transgenic mice, respectively. When the tumor size reached 6-7 mm in diameter, mice were randomized into four groups (day 0). Mice received intratumoral administration of TAVO or control plasmid on days 0, 4, and 7, and intraperitoneal injection of anti-PD-1 mAb or rat IgG2a isotype control on days 2, 6, 9 and 13. **B.** Survival curves of JC-HER3 tumor-bearing mice. All error bars represent mean \pm SEM *P < 0.05

Figure 5. Clinical Data Demonstrates That TAVO Treatment Converts a Previous ICB Non-Responder

A. Baseline breast nodule (treated), scalp metastases (untreated) and lung metastases (untreated). **B.** After 1 cycle of TAVO and 3 months of IV nivolumab therapy.

Summary & Conclusions

- TAVO treatment overcomes an immunologically ‘cold’ tumor microenvironment by expanding and activating T cells locally and systemically and by minimizing the infiltration of potentially suppressive granulocytic cells in both pre-clinical models and TNBC patients
- There is an increase in expression of PD-1/PD-L1 following TAVO therapy that may sensitize a patient to subsequent checkpoint inhibitor therapy
- Combined treatment of TAVO and PD-1/PD-L1 blockade enhanced anti-tumor efficacy and prolonged survival in preclinical models of TNBC
- These data are supportive of ongoing trial OMS-I141 (KEYNOTE-890), a phase 2, multi-cohort, open-label, multicenter study
 - Cohort 1 will be a single-arm study of intratumoral tavokinogene telseplasmid (TAVO) plus electroporation (EP) in combination with pembrolizumab therapy
 - Cohort 2 will be a single-arm study of intratumoral TAVO-EP plus pembrolizumab with nab-paclitaxel (Abraxane®) chemotherapy
- Patients with TNBC and EP accessible cutaneous/subcutaneous disease will be enrolled

References

- Lyerly HK, Osada T, Hartman ZC. *Clin Cancer Res.* 2019;25:9-11.
- Osada T, et al. *Cancer Immunol Immunother.* 2012;61:1941-1951.
- Algazi A, et al. *Ann Oncol.* 2020;31:532-540.
- Algazi AP, et al. *Clin Cancer Res.* 2020. doi:10.1158/1078-0432.Ccr-19-2217.
- Daud AI, et al. *J Clin Oncol.* 2008;26:5896-5903.
- Telli ML, Wapnir I, Devitt B, et al. San Antonio Breast Cancer Symposium 2019. Abstract P3-09-04.

Abbreviations:

BC, breast cancer; EOS, end of study; ICB, immune checkpoint blockade; IHC, immunohistochemistry; IL-12, interleukin-12; IT, intratumoral; mAb, monoclonal antibody; MDSC, myeloid derived suppressor cells; PD-1, programmed cell death receptor 1; PD-L1, programmed cell death ligand 1; PMBC, peripheral blood mononuclear cells; S, screening; TAVO, tavokinogene telseplasmid; TNBC, triple-negative breast cancer.